Abstract

Our research focuses on the tangent space of a point on a four-dimensional Riemannian manifold. Besides having a positive definite metric, the manifold is endowed with an additional tensor structure of type (1,1), whose fourth power is minus the identity. The additional structure is skew-circulant and compatible with the metric, such that an isometry is induced in every tangent space on the manifold. Both structures define an indefinite metric. With the help of the indefinite metric, we determine circles in different two-planes in the tangent space on the manifold. We also calculate the length and area of the circles. On a smooth closed curve, such as a circle, we define a vector force field. Further, we obtain the circulation of the vector force field along the curve, as well as the flux of the curl of this vector force field across the curve. Finally, we find a relation between these two values, which is an analog of the well-known Green’s formula in the Euclidean space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call