Abstract

Constructing an analysis-suitable parameterization for the computational domain from its boundary representation plays a crucial role in the isogeometric design-through-analysis pipeline. PDE-based elliptic grid generation is an effective method for generating high-quality parameterizations with rapid convergence properties for the planar case. However, it may generate non-uniform grid lines, especially near the concave/convex parts of the boundary. In the present work, we introduce a novel scaled discretization of harmonic mappings in the Sobolev space H1 to remit it. Analytical Jacobian matrices for the involved nonlinear equations are derived to accelerate the computation. To enhance the numerical stability and the speed of convergence, we propose a simple and yet effective preconditioned Anderson acceleration framework instead of using computationally expensive Newton-type iteration. Three preconditioning strategies are suggested, namely diagonal Jacobian, block-diagonal Jacobian, and full Jacobian. Furthermore, we discuss a delayed update strategy of the preconditioner, i.e., the preconditioner is updated every few steps to reduce the computational cost per iteration. Numerical experiments demonstrate the effectiveness and efficiency of our improved parameterization approach and the computational efficiency of our preconditioned Anderson acceleration scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.