Abstract

Abstract The aim of this work is to tackle the three–dimensional (3D) Heston– Cox–Ingersoll–Ross (HCIR) time–dependent partial differential equation (PDE) computationally by employing a non–uniform discretization and gathering the finite difference (FD) weighting coe cients into differentiation matrices. In fact, a non–uniform discretization of the 3D computational domain is employed to achieve the second–order of accuracy for all the spatial variables. It is contributed that under what conditions the proposed procedure is stable. This stability bound is novel in literature for solving this model. Several financial experiments are worked out along with computation of the hedging quantities Delta and Gamma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.