Abstract

W. Magnus introduced a particular differential equation characterizing the logarithm of the solution of linear initial value problems for linear operators. The recursive solution of this differential equation leads to a peculiar Lie series, which is known as Magnus expansion, and involves Bernoulli numbers, iterated Lie brackets and integrals. This paper aims at obtaining further insights into the fine structure of the Magnus expansion. By using basic combinatorics on planar rooted trees we prove a closed formula for the Magnus expansion in the context of free dendriform algebra. From this, by using a well-known dendriform algebra structure on the vector space generated by the disjoint union of the symmetric groups, we derive the Mielnik-Pleba\'nski-Strichartz formula for the continuous Baker-Campbell-Hausdorff series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.