Abstract
AbstractLet G be a group and 𝕂 = ℂ or ℝ. In this article, as a generalization of the result of Albert and Baker, we investigate the behavior of bounded and unbounded functions f : G → 𝕂 satisfying the inequalityWhere ϕ: Gn-1 → [0,∞]. Also as a a distributional version of the above inequality we consider the stability of the functional equationwhere u is a Schwartz distribution or Gelfand hyperfunction, o and ⊗ are the pullback and tensor product of distributions, respectively, and S(x1, ..., xn) = x1 + · · · + xn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.