Abstract

It has recently been established that in numerical model experiments climate sensitivity and feedback change over time and that this time dependence may result from a so-called “pattern effect”, i.e., changing patterns of surface warming. The Atlantic Meridional Overturning Circulation (AMOC) influences surface warming patterns as it redistributes energy across the globe. Thus, it may be an important factor for climate feedback change over time.In this study, members of the Coupled Model Intercomparison Project (CMIP) phases 5 and 6 are investigated and two groups of models distinguished, one with weak and one with strong feedback change over time. It is found that the model groups differ significantly in the AMOC response to quadrupling of CO2. To investigate if the difference in AMOC development between the two groups may be responsible for the differences in feedback, experiments with a slab-ocean model (SOM) are performed where the AMOC change is mimicked by changing the ocean heat uptake pattern. Especially in the Northern-Hemisphere Extra-Tropics the differences between the CMIP model groups are found to be qualitatively reproduced but other factors are needed to explain differences in the Southern Hemisphere and the Tropics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.