Abstract

AbstractIn this paper, we extend the 3/2 model for VIX studied by Goard and Mazur and introduce the generalized 3/2 and 1/2 classes of volatility processes. Under these models, we study the pricing of European and American VIX options, and for the latter, we obtain an early exercise premium representation using a free‐boundary approach and local time‐space calculus. The optimal exercise boundary for the volatility is obtained as the unique solution to an integral equation of Volterra type. We also consider a model mixing these two classes and formulate the corresponding optimal stopping problem in terms of the observed factor process. The price of an American VIX call is then represented by an early exercise premium formula. We show the existence of a pair of optimal exercise boundaries for the factor process and characterize them as the unique solution to a system of integral equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.