Abstract

We claim that HOMFLY polynomials for virtual knots, defined with the help of the matrix-model recursion relations, contain more parameters, than just the usual q and A=qN. These parameters preserve topological invariance and do not show up in the case of ordinary (non-virtual) knots and links. They are most conveniently observed in the hypercube formalism: then they substitute q-dimensions of certain fat graphs, which are not constrained by recursion and can be chosen arbitrarily. The number of these new topological invariants seems to grow fast with the number of non-virtual crossings: 0, 1, 1, 5, 15, 91, 784, 9160, ... This number can be decreased by imposing the factorization requirement for composites, in addition to topological invariance – still freedom remains. None of these new parameters, however, appears in HOMFLY for Kishino unknot, which thus remains unseparated from the ordinary unknots even by this enriched set of knot invariants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.