Abstract
The set of element orders of a finite group $G$ is called the {em spectrum}. Groups with coinciding spectra are said to be {em isospectral}. It is known that if $G$ has a nontrivial normal soluble subgroup then there exist infinitely many pairwise non-isomorphic groups isospectral to $G$. The situation is quite different if $G$ is a nonabelain simple group. Recently it was proved that if $L$ is a simple classical group of dimension at least 62 and $G$ is a finite group isospectral to $L$, then up to isomorphism $Lleq GleqAut L$. We show that the assertion remains true if 62 is replaced by 38.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.