Abstract

Distance-regular graphs are a key concept in Algebraic Combinatorics and have given rise to several generalizations, such as association schemes. Motivated by spectral and other algebraic characterizations of distance-regular graphs, we study ‘almost distance-regular graphs’. We use this name informally for graphs that share some regularity properties that are related to distance in the graph. For example, a known characterization of a distance-regular graph is the invariance of the number of walks of given length between vertices at a given distance, while a graph is called walk-regular if the number of closed walks of given length rooted at any given vertex is a constant. One of the concepts studied here is a generalization of both distance-regularity and walk-regularity called m-walk-regularity. Another studied concept is that of m-partial distance-regularity or, informally, distance-regularity up to distance m. Using eigenvalues of graphs and the predistance polynomials, we discuss and relate these and other concepts of almost distance-regularity, such as their common generalization of ( ℓ , m ) -walk-regularity. We introduce the concepts of punctual distance-regularity and punctual walk-regularity as a fundament upon which almost distance-regular graphs are built. We provide examples that are mostly taken from the Foster census, a collection of symmetric cubic graphs. Two problems are posed that are related to the question of when almost distance-regular becomes whole distance-regular. We also give several characterizations of punctually distance-regular graphs that are generalizations of the spectral excess theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.