Abstract

Abstract. This paper deals with an extremal problem concerning hypergraph colorings. Let k be an integer. The problem is to find the value m k (n) equal to the minimum number of edges in an n-uniform hypergraph not admitting two-colorings of the vertex set such that every edge of the hypergraph contains at least k vertices of each color. In this paper, we obtain upper bounds of m k (n) for small k and n, the exact value of m 4(8), and a lower bound for m 3(7).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.