Abstract
A quaternion field is a pair p = {α, u} of a function α and a vector field u given on a 3d Riemannian manifold Ω with boundary. A field is said to be harmonic if ∇α = rot u in Ω. The linear space of harmonic fields is not an algebra with respect to quaternion multiplication. However, it may contain commutative algebras, which is the subject of the paper. Possible applications of these algebras to the impedance tomography problem are touched upon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.