Abstract

We investigate algebraically coisotropic submanifolds $X$ in a holomorphic symplectic projective manifold $M$. Motivated by our results in the hypersurface case, we raise the following question: when $X$ is not uniruled, is it true that up to a finite \'etale cover, the pair $(X,M)$ is a product $(Z\times Y, N\times Y)$ where $N, Y$ are holomorphic symplectic and $Z\subset N$ is Lagrangian? We prove that this is indeed the case when $M$ is an abelian variety, and give some partial answer when the canonical bundle $K_X$ is semi-ample. In particular, when $K_X$ is nef and big, $X$ is Lagrangian in $M$ (in fact this also holds without nefness assumption). We also remark that Lagrangian submanifolds do not exist on a sufficiently general Abelian variety, in contrast to the case when $M$ is irreducible hyperk\"ahler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call