Abstract
AbstractIn this paper, we present a new kind of quadratic approximation operator reproducing of both algebraic and trigonometric functions. It is called integro quadratic splines interpolant, which agree with the given integral values of a univariate real‐valued function over the same intervals, rather than the functional values at the knots. Efficient approximations of fractional integrals and fractional Caputo derivatives based on this interpolant, are constructed and well studied. The general approximation error is studied too, and the super convergence property is also derived when the interval is equally partitioned. Numerical examples illustrate that our method is very effective and our quadratic algebraic trigonometric integro spline has higher approximation ability than others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.