Abstract

Let k be a field and A a noetherian k-algebra. In this note, we shall study the universal finite module of differentials of A over k, which is denoted by Dk(A). When the characteristic of k is zero, detailed results have been obtained by Scheja and Storch [8]. So we shall treat the positive characteristic case. In § 1, we shall study differential modules of a local ring over subfields. We obtain a criterion of regularity (Theorem (1.14)). In § 2, we shall study the formal fibres and regular locus of A with Dk(A). Our main result is Theorem (2.1) which shows that, if Dk(A) exists, then A is a universally catenary G-ring under a certain assumption. In the local case, this is a generalization of Matsumura’s theorem ([5] Theorem 15), where regularity of A is assumed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.