Abstract

Several authors have shown that massive stars exploding at a rate of about three per century can account for a large portion, if not all, of the observed interstellar Al-26. In a separate argument using models of Galactic chemical evolution, Clayton (1984) showed that the Al-26/Al-27 production ratio was not large enough to maintain enough Al-26 in the Galactic disk gas of about 10 exp 10 solar masses having solar composition. We present a resolution of those conflicting arguments. A past history of Galactic infall growing the Galactic disk so dilutes the stable Al-27 concentration that the two approaches can be brought into near agreement. If massive stars dominate the production of Al-26, we suggest that the apparent shortfall of their Al-26/Al-27 yield ratio is to be interpreted as evidence for significant growth of the Galactic disk. We also discuss the implications of these arguments for other extinct radioactivities in meteorites, using I-129 and Sm-146 as examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.