Abstract
. We study an iterated temporal and contemporaneous aggregation of N independent copies of a strongly stationary subcritical Galton–Watson branching process with regularly varying immigration having index α ∈ (0, 2). We show that limits of finite-dimensional distributions of appropriately centered and scaled aggregated partial-sum processes exist when first taking the limit as N → ∞and then the time scale n→ ∞. The limit process is an α-stable process if α ∈ (0, 1) ∪ (1, 2) and a deterministic line with slope 1 if α = 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.