Abstract

A number of previous studies have investigated the possibilities of modelling the change in density of bones. Remodeling can be formulated at the constitutive or the kinematic level. In this work we introduce a formulation for the density growth process which takes not only the mechanical stimulus into account but also the influence of age on the evolution of growth. We demonstrate the implementation in the context of the finite element method. This novel approach is illustrated for a simple uniaxial extension test and is verified against previous numerical results. Moreover, two further physiologically motivated examples are performed. The results of the proposed modified model show excellent agreement with comparable results from literature and are promising for the application to real-life problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.