Abstract
In 1955, Berger [4] gave a list of irreducible reductive representations which can occur as the holonomy of a torsion-free affine connection. While this list was stated to be complete in the case of metric connections, the situation in the general case remained unclear. The (non-metric) representations which are missing from this list are called exotic. In recent years, it has been determined that exotic holonomies do exist. Thus, Berger’s classification is yet to be completed in the non-metric case. In this paper, we investigate certain holonomy representations of reductive Lie groups whose semi-simple part is not simple.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.