Abstract

A generalized family of adversary robust consensus protocols is proposed and analyzed. These are distributed algorithms for multiagent systems seeking to agree on a common value of a shared variable, even in the presence of faulty or malicious agents, which are updating their local state according to the protocol rules. In particular, we adopt monotone joint-agent interactions, a very general mechanism for processing locally available information and allowing cross-comparisons between state-values of multiple agents simultaneously. The salient features of the proposed class of algorithms are abstracted as a Petri net and convergence criteria for the resulting time evolutions formulated by employing structural invariants of the net.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.