Abstract

Let E/F be a totally real quadratic extension of a totally real algebraic number field. The author has in an earlier paper considered automorphic forms defined with respect to a quaternion algebra BE over E and a theta lift from such quaternionic forms to Hilbert modular forms over F. In this paper we construct adelic forms in the same setting, and derive explicit formulas concerning the action of Hecke operators. These formulas give an algebraic foundation for further investigations, in explicit form, of the arithmetic properties of the adelic forms and of the associated zeta and L-functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.