Abstract
We study adaptive security of delayed-input Sigma protocols and non-interactive zero-knowledge (NIZK) proof systems in the common reference string (CRS) model. Our contributions are threefold: We exhibit a generic compiler taking any delayed-input Sigma protocol and returning a delayed-input Sigma protocol satisfying adaptive-input special honest-verifier zero knowledge (SHVZK). In case the initial Sigma protocol also satisfies adaptive-input special soundness, our compiler preserves this property. We revisit the recent paradigm by Canetti et al. (STOC 2019) for obtaining NIZK proof systems in the CRS model via the Fiat-Shamir transform applied to so-called trapdoor Sigma protocols, in the context of adaptive security. In particular, assuming correlation-intractable hash functions for all sparse relations, we prove that Fiat-Shamir NIZKs satisfy either: (i) Adaptive soundness (and non-adaptive zero knowledge), so long as the challenge is obtained by hashing both the prover’s first round and the instance being proven; (ii) Adaptive zero knowledge (and non-adaptive soundness), so long as the challenge is obtained by hashing only the prover’s first round, and further assuming that the initial trapdoor Sigma protocol satisfies adaptive-input SHVZK. We exhibit a generic compiler taking any Sigma protocol and returning a trapdoor Sigma protocol. Unfortunately, this transform does not preserve the delayed-input property of the initial Sigma protocol (if any). To complement this result, we also give yet another compiler taking any delayed-input trapdoor Sigma protocol and returning a delayed-input trapdoor Sigma protocol with adaptive-input SHVZK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.