Abstract

Receiver architectures in the form of a linear filter front-end followed by a hard-limiting decision maker are considered for DS-CDMA communication systems. Based on stochastic approximation concepts a recursive algorithm is developed for the adaptive optimization of the linear filter front-end in the minimum BER sense. The recursive form is decision driven and distribution free. For additive white Gaussian noise (AWGN) channels, theoretical analysis of the BER surface of linear filter receivers identifies the subset of the linear filter space where the optimal receiver lies and offers a formal proof of guaranteed global optimization with probability one for the two-user case. To the extent that the output of a linear DS-CDMA filter can be approximated by a Gaussian random variable, a minimum-mean-square-error optimized linear filter approximates the minimum BER solution. Numerical and simulation results indicate that for realistic AWGN DS-CDMA systems with reasonably low signature cross-correlations the linear minimum BER filter and the MMSE filter exhibit approximately the same performance. The linear minimum BER receiver is superior, however, when either the signature cross-correlation is high or the background noise is non-Gaussian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.