Abstract
In recent years different authors ([4, 16, 17]) have noticed and investigated some analogy between Mather’s theory of minimal measures in Lagrangian dynamic and the mass transportation (or Monge-Kantorovich) problem. We replace the closure and homological constraints of Mather’s problem by boundary terms and we investigate the equivalence with the mass transportation problem. An Hamiltonian duality formula for the mass transportation and the equivalence with Brenier’s formulation are also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Differential Equations and Applications NoDEA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.