Abstract

Learning classifier systems use genetic algorithms to facilitate rule-discovery, where rule fitness has traditionally been payoff prediction-based. Current research has shifted to the use of accuracy-based fitness. This paper presents a simple Markov model of the algorithm in such systems, allowing comparison between the two forms of rule utility measure. Using a single-step task the previously discussed benefits of accuracy over prediction are clearly shown with regard to overgeneral rules. The effects of a niche-based algorithm (maximal generality) are also briefly examined, as are the effects of mutation under the two fitness schemes. Finally, the behaviour of the Genetic Algorithm during the solution of multi-step tasks is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.