Abstract

Abnormal subgrain growth has been proposed as the nucleation mechanism for recrystallization. To test this hypothesis, Monte Carlo Potts model simulations of subgrain growth were performed on single-phase, strain-free subgrain structures with experimentally validated microstructure, texture, boundary character, and boundary properties. Results indicate that abnormal growth events emerge spontaneously during evolution in such systems, and abnormal subgrains behave as predicted by mean field theory. An analysis predicts the frequency of abnormal growth events as a function of local neighborhood and the boundary misorientation distribution. A recrystallization model is derived based on the abnormal subgrain growth analysis. Using data for aluminum subgrain structures, the model predicts reasonable recrystallized grain sizes as a function of von Mises strain. The extension of these results to abnormal grain growth is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.