Abstract

It is proved that, for a complex minimal smooth projective surface S of general type with a pencil of genus g = 3 or 4, any Abelian automorphism group of S is of order [les ] 12K2S + 96(g − 1), provided K2S > 8(g − 1)2, where KS is the canonical divisor of S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.