Abstract
We construct new non-diagonal solutions to the boundary Yang-Baxter equation corresponding to a two-dimensional field theory with U q ( a 2 (1)) quantum affine symmetry on a half-line. The requirements of boundary unitarity and boundary crossing symmetry are then used to find overall scalar factors which lead to consistent reflection matrices. Using the boundary bootstrap equations we also compute the reflection factors for scalar bound states (breathers). These breathers are expected to be identified with the fundamental quantum particles in a 2 (1) affine Toda field theory and we therefore obtain a conjecture for the affine Toda reflection factors. We compare these factors with known classical results and discuss their duality properties and their connections with particular boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.