Abstract

In the adaptive step primal-dual interior point method for linear programming, polynomial algorithms are obtained by computing Newton directions towards targets on the central path, and restricting the iterates to a neighborhood of this central path. In this paper, the adaptive step methodology is extended, by considering targets in a certain central region, which contains the usual central path, and subsequently generating iterates in a neighborhood of this region. The size of the central region can vary from the central path to the whole feasible region by choosing a certain parameter. An 𝒪(√nL) iteration bound is obtained under mild conditions on the choice of the target points. In particular, we leave plenty of room for experimentation with search directions. The practical performance of the new primal-dual interior point method is measured on part of the Netlib test set for various sizes of the central region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.