Abstract

We generalize the Jensen-Shannon divergence and the Jensen-Shannon diversity index by considering a variational definition with respect to a generic mean, thereby extending the notion of Sibson’s information radius. The variational definition applies to any arbitrary distance and yields a new way to define a Jensen-Shannon symmetrization of distances. When the variational optimization is further constrained to belong to prescribed families of probability measures, we get relative Jensen-Shannon divergences and their equivalent Jensen-Shannon symmetrizations of distances that generalize the concept of information projections. Finally, we touch upon applications of these variational Jensen-Shannon divergences and diversity indices to clustering and quantization tasks of probability measures, including statistical mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.