Abstract
In this paper, we present a numerical scheme for a first-order hyperbolic equation of nonlinear type perturbed by a multiplicative noise. The problem is set in a bounded domain D of \({\mathbb{R}^{d}}\) and with homogeneous Dirichlet boundary condition. Using a time-splitting method, we are able to show the existence of an approximate solution. The result of convergence of such a sequence is based on the work of Bauzet–Vallet–Wittbold (J Funct Anal, 2013), where the authors used the concept of measure-valued solution and Kruzhkov’s entropy formulation to show the existence and uniqueness of the stochastic weak entropy solution. Then, we propose numerical experiments by applying this scheme to the stochastic Burgers’ equation in the one-dimensional case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.