Abstract

A model for computation over an arbitrary (ordered) ring R is presented. In this general setting, universal machines, partial recursive functions, and NP-complete problems are obtained. While the theory reflects of classical over Z (e.g. the computable functions are the recursive functions), it also reflects the special mathematical character of the underlying ring R (e.g. complements of Julia sets provide natural examples of recursively enumerable undecidable sets over the reals) and provides a natural setting for studying foundational issues concerning algorithms in numerical analysis.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.