Abstract

In this paper we study a system of reaction–diffusion equations arising from competition of two microbial populations for a single-limited nutrient with internal storage in an unstirred chemostat. The conservation principle is used to reduce the dimension of the system by eliminating the equation for the nutrient. The reduced system (limiting system) generates a strongly monotone dynamical system in its feasible domain under a partial order. We construct suitable upper, lower solutions to establish the existence of positive steady-state solutions. Given the parameters of the reduced system, we answer the basic questions as to which species survives and which does not in the spatial environment and determine the global behaviors. The primary conclusion is that the survival of species depends on species's intrinsic biological characteristics, the external environment forces and the principal eigenvalues of some scalar partial differential equations. We also lift the dynamics of the limiting system to the full system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call