Abstract

In the present article, we consider a class of univalent harmonic mappings, $\mathcal{C}_{T} = \left\{ T_{c}[f] =\frac{f+czf'}{1+c}+\overline{\frac{f-czf'}{1+c}}; \; c>0\;\right\}$ and $f$ is convex univalent in $\mathbb{D}$, whose functions map the open unit disk $\mathbb{D}$ onto a domain convex in the direction of the imaginary axis. We estimate coefficient, growth and distortion bounds for the functions of the same class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.