Abstract

We introduce a new subclass of close-to-convex harmonic mappings in the unit disk, which originates from the work of P. Mocanu on univalent mappings. We also give coefficient estimates, and discuss the Fekete-Szegő problem, for this class of mappings. Furthermore, we consider growth, covering and area theorems of the class. In addition, we determine a disk in which the partial sum is close-to-convex for each function of the class . Finally, for certain values of the parameters and , we solve the radii problems related to starlikeness and convexity of functions of this class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.