Abstract
Abstract Knowledge about the input–output relations of a system can be very important in many practical situations in engineering. Linear systems theory comes from applied mathematics as an efficient and simple modeling technique for input–output systems relations. Many identification problems arise from a set of linear equations, using known outputs only. It is a type of inverse problems, whenever systems inputs are sought by its output only. This work presents a regularization method, called random matrix method, which is able to reduce errors on the solution of ill-conditioned inverse problems by introducing modifications into the matrix operator that rules the problem. The main advantage of this approach is the possibility of reducing the condition number of the matrix using the probability density function that models the noise in the measurements, leading to better regularization performance. The method described was applied in the context of a force identification problem and the results were compared quantitatively and qualitatively with the classical Tikhonov regularization method. Results show the presented technique provides better results than Tikhonov method when dealing with high-level ill-conditioned inverse problems.
Highlights
Knowledge about the input–output relations of a system can be very important in many practical situations in engineering
The main advantage of this approach is the possibility of reducing the condition number of the matrix using the probability density function that models the noise in the measurements, leading to better regularization performance
If no information about the noise is known we suggest that the random matrices must be generated preferably by uniform distribution or Gaussian distribution, so that it could be possible to search an unbiased solution
Summary
Abstract: Knowledge about the input–output relations of a system can be very important in many practical situations in engineering. Linear systems theory comes from applied mathematics as an efficient and simple modeling technique for input–output systems relations. Many identification problems arise from a set of linear equations, using known outputs only. It is a type of inverse problems, whenever systems inputs are sought by its output only. This work presents a regularization method, called random matrix method, which is able to reduce errors on the solution of ill-conditioned inverse problems by introducing modifications into the matrix operator that rules the problem. The method described was applied in the context of a force identification problem and the results were compared quantitatively and qualitatively with the classical Tikhonov regularization method. Results show the presented technique provides better results than Tikhonov method when dealing with high-level ill-conditioned inverse problems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.