Abstract

A stochastic model of a neuron with excitatories and inhibitories incident on it is studied. The excitatory and the inhibitory sequences are independent renewal processes. The effect of an excitatory is to increase the membrane potential by random amounts that are independently and identically distributed, while an inhibitory causes a reset of the potential to the rest level so that the accumulation must start anew. When the potential crosses a threshold level K, the neuron fires. Immediately after this, the membrane potential returns to the rest level. An expression for the probability density function of the interval between two successive firings is derived, and special cases worked out. Graphs of the mean and the mean − √variance versus the threshold level are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.