Abstract

Data-driven control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement noise. However, besides measurement noise, stochastic disturbances might also directly affect the dynamics. In this paper, we leverage Polynomial Chaos Expansions (PCE) to extend the deterministic fundamental lemma towards stochastic systems. This extension allows to predict future statistical distributions of the inputs and outputs for stochastic LTI systems in data-driven fashion, i.e., based on the knowledge of previously recorded input-output-disturbance data and of the disturbance distribution we perform data-driven uncertainty propagation. Finally, we analyze data-driven stochastic optimal control problems and we propose a conceptual framework for data-driven stochastic predictive control. Numerical examples illustrate the efficacy of the proposed concepts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.