Abstract

We study the asymptotic behavior of solutions and eigenelements to a boundary value problem for the Laplace equation in a domain perforated along part of the boundary. On the boundary of holes, we set the homogeneous Dirichlet boundary condition and the Steklov spectral condition on the mentioned part of the outer boundary of the domain. Assuming that the boundary microstructure is periodic, we construct the limit problem and prove the homogenization theorem. Nous étudions le comportement asymptotique des solutions et des éléments propres à un problème aux limites pour l'équation de Laplace dans un domaine perforé le long d'une partie de la frontière. Sur la frontière de trous, nous posons la condition de Dirichlet homogène et la condition spectrale de Steklov sur la part mentionnée de la frontière extérieure du domaine. En supposant que la microstructure de la frontière est périodique, nous construisons le problème aux limites et prouvons le théorème d'homogénéisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.