Abstract

This paper adapts the so-called Shubert algorithm for Extremum Seeking Control (ESC) to seek the global extremum (in presence of local extrema) of general dynamic plants. Different from derivative based methods that are widely used in ESC, the Shubert algorithm is a good representative of sampling optimization methods. With knowledge of the Lipschitz constant of an unknown static mapping, this deterministic algorithm seeks the global extremum. By introducing “waiting time” the proposed Shubert algorithm-based global extremum seeking guarantees the semi-global practical convergence (in the initial states) to the global extremum if compact sets of inputs are considered. Several numerical examples demonstrate how proposed method may be successfully deployed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.