Abstract
Within the framework of an existing anisotropic thin-walled beam model, a number of non-classical effects are further incorporated and the model thereby developed is validated. Three types of lay-ups, namely, the cross-ply, circumferentially uniform stiffness, and circumferentially asymmetric stiffness are investigated. The solution methodology is based on the Extended Galerkin's Method and the non-classical effects on the static responses and natural frequencies are investigated. Comparisons of the predictions by the present model with experimental data and other analytical as well as numerical results are conducted and pertinent conclusions are drawn. This work is the first attempt to validate a class of refined thin-walled beam model that has been extensively used towards the study, among others, of dynamic response, static aeroelasticity and structural/aeroelastic feedback control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.