Abstract

In this paper we introduce and study a new sequence of positive linear operators acting on the space of Lebesgue-integrable functions on the unit interval. These operators are defined by means of continuous selections of Borel measures and generalize the Kantorovich operators. We investigate their approximation properties by presenting several estimates of the rate of convergence by means of suitable moduli of smoothness. Some shape preserving properties are also shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.