Abstract

In the paper, a Newton-type method for the solution of generalized equations (GEs) is derived, where the linearization concerns both the single-valued and the multivalued part of the considered GE. The method is based on the new notion of semismoothness${}^*$, which, together with a suitable regularity condition, ensures the local superlinear convergence. An implementable version of the new method is derived for a class of GEs, frequently arising in optimization and equilibrium models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.