Abstract
AbstractIn this paper we study the scattering length for positive additive functionals of symmetric stable processes on . The additive functionals considered here are not necessarily continuous. We prove that the semi‐classical limit of the scattering length equals the capacity of the support of a certain measure potential, thus extend previous results for the case of positive continuous additive functionals. We also give an equivalent criterion for the fractional Laplacian with a measure valued non‐local operator as a perturbation to have purely discrete spectrum in terms of the scattering length, by considering the connection between scattering length and the bottom of the spectrum of Schrödinger operator in our settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.