Abstract

The nonlinear saturation of low-power-threshold two-upper-hybrid (UH)-plasmon parametric decay instability (PDI) of an extraordinary pump wave-excited in the presence of a nonmonotonous density profile is analyzed in detail. It is shown that the primary absolute PDI enhancing the UH wave fluctuations from the thermal noise level, which was analyzed in linear approximation in Popov and Gusakov (2015 Plasma Phys. Control. Fusion 57 025022), is saturated due to a secondary low-threshold decay of the daughter UH wave. The secondary decay leads to excitation of the secondary UH wave, downshifted in frequency and also trapped in the vicinity of the local maximum of the density profile, and the ion Bernstein wave. A set of equations describing the primary and secondary decays and accounting for the finite pump-beam width is derived and solved numerically. The results of numerical modeling are shown to be in agreement with an analytical estimation of the growth rates of both the primary and secondary parametric decays and of the saturation level. The anomalous absorption of the pump wave due to the two plasmon PDI is estimated at a level of 6% for the plasma density profile considered in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.