Abstract

In this paper, a backward diffusion problem for a space-fractional diffusion equation with a nonlinear source in a strip is investigated. This problem is obtained from the classical diffusion equation by replacing the second-order space derivative with a Riesz–Feller derivative of order α∈(0,2]. A nonlinear problem is severely ill-posed, therefore we propose two new modified regularization solutions to solve it. We further show that the approximated problems are well-posed and their solutions converge if the original problem has a classical solution. In addition, the convergence estimates are presented under a priori bounded assumption of the exact solution. For estimating the error of the proposed method, a numerical example has been implemented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.