Abstract

In this work, we consider the rescaled nonlocal diffusion problem with Neumann Boundary Conditions \[ \begin{cases} u_t^{\epsilon}(x,t)=\displaystyle\frac{1}{\epsilon^2} \int_{\Omega}J_{\epsilon}(x-y)(u^\epsilon(y,t)-u^\epsilon(x,t))dy\\ \qquad \qquad+\displaystyle\frac{1}{\epsilon}\int_{\partial \Omega}G_\epsilon(x-y)g(y,t)dS_y,\\ u^\epsilon(x,0)=u_0(x), \end{cases} \] where $\Omega\subset\mathbb{R}^{N}$ is a bounded, connected and smooth domain, $g$ a positive continuous function, $J_\epsilon(z)=C_1\frac{1}{\epsilon^N}J(\frac{z}{\epsilon}), G_\epsilon(x)=C_1\frac{1}{\epsilon^N}G(\frac{x}{\epsilon}),$ $J$ and $G$ well defined kernels, $C_1$ a normalization constant. The solutions of this model have been used without prove to approximate the solutions of a family of nonlocal diffusion problems to solutions of the respective analogous local problem. We prove existence and uniqueness of the solutions for this problem by using the Banach Fixed Point Theorem. Finally, some conclusions are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call