Abstract

This paper discusses a relation between the re-initialization equation of the level-set functions derived by Wacławczyk [J. Comput. Phys., 299 (2015)] and the condition for the phase equilibrium provided by the stationary solution to the modified Allen-Cahn equation [Acta Metall., 27 (1979)]. As a consequence, the statistical model of the non-flat interface in the state of phase equilibrium is postulated. This new physical model of the non-flat interface is introduced based on the statistical picture of the sharp interface disturbed by the field of stochastic forces, it yields the relation between the sharp and diffusive interface models. Furthermore, the new techniques required for the accurate solution of the model equations are proposed. First it is shown, the constrained interpolation improves re-initialization of the level-set functions as it avoids oscillatory numerical errors typical for the second-order accurate interpolation schemes. Next, the new semi-analytical, second order accurate Lagrangian scheme is put forward to integrate the advection equation in time avoiding interface curvature oscillations introduced by the second-order accurate flux limiters. These techniques provide means to obtain complete, second-order convergence during advection and re-initialization of the interface in the state of phase equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.