Abstract

Abstract We study an asymptotic problem of a semilinear partial differential equation (PDE) with Neumann boundary condition, periodic coefficients and highly oscillating drift and nonlinear terms. Our analysis focuses on the double limiting behavior of the PDE-solution perturbed by ε (viscosity parameter) and δ (scaling coefficient) both tending to zero. To do so, we state basic properties of the large deviations principle (LDP) and we express the logarithmic asymptotic of the PDE-solution. Particularly, we provide it for the case when ε converges more quickly than δ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call