Abstract

AbstractThe well‐known Friendship Theorem states that if G is a graph in which every pair of vertices has exactly one common neighbor, then G has a single vertex joined to all others (a “universal friend”). V. Sós defined an analogous friendship property for 3‐uniform hypergraphs, and gave a construction satisfying the friendship property that has a universal friend. We present new 3‐uniform hypergraphs on 8, 16, and 32 vertices that satisfy the friendship property without containing a universal friend. We also prove that if n ≤ 10 and n ≠ 8, then there are no friendship hypergraphs on n vertices without a universal friend. These results were obtained by computer search using integer programming. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 253–261, 2008

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.